ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Moltex demonstrates its WATSS fuel recycling process
Advanced reactor company Moltex Energy Canada said it has successfully validated its waste to stable salt (WATSS) process on used nuclear fuel bundles from an unnamed Canadian commercial reactor through hot cell experiments conducted by Canadian Nuclear Laboratories.
R. K. Osborn
Nuclear Science and Engineering | Volume 15 | Number 3 | March 1963 | Pages 245-258
Technical Paper | doi.org/10.13182/NSE63-A26435
Articles are hosted by Taylor and Francis Online.
This review deals exclusively with the theoretical task of interpreting the measurement of a thermal neutron absorption rate in terms of the neutron density that existed at the probe location prior to probe insertion. Successful accomplishment of this task is fairly obviously of considerable practical importance, since activation measurements of thermal fluxes are an important adjunct to many reactor experiments and are also frequently employed to obtain thermal flux maps in reactor cores and reflectors. Because of its importance, the problem has received extensive and varied (but usually piecemeal and semi-intuitive) theoretical attention over the past twenty years. Many experiments have been performed concurrently. The net result has been to perpetuate a lively interest in the problem, since comparisons of experiment with experiment, experiment with theory, and theory with theory have been ragged and controversial.1 It will be the purpose of this review to present an adequately precise and general statement of the problem and then attempt deductive comparisons of various theoretical attacks upon it. Attention will be focused primarily upon the task of obtaining operational descriptions of the diverse approximations explicit or implicit in the calculations considered. Throughout the review attention is persistently directed to an aspect of the problem that has received less than adequate attention so far, i.e., that of the effect of “flux-hardening” on the absorption rate. An attempt to obtain a qualitative estimate of the importance of this effect is presented, but the only conclusion drawn so far is that the effect is not obviously an ignorable one.