ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. F. Nichols, J. R. Worden, F. C. Engesser, R. E. Heineman
Nuclear Science and Engineering | Volume 15 | Number 3 | March 1963 | Pages 233-244
Technical Paper | doi.org/10.13182/NSE63-A26434
Articles are hosted by Taylor and Francis Online.
A series of experimental measurements has been made on the Experimental Gas Cooled Reactor (EGCR) lattice in the Physical Constants Test Reactor (PCTR). The measurements provide a broad basis for normalization of reactor calculations for lattices of this type. The fuel assembly is a cluster of seven uranium oxide rods, enriched in the U235 isotope and clad with stainless steel. The fuel is spaced on an eight-inch square pitch in a graphite moderator. Values of the lattice parameters k∝ , f, p, and e have been obtained for 1.8% enrichment of the uranium oxide fuel. The values of k∝ and f have also been obtained for 2.6% enrichment fuel. The techniques of using the PCTR have been extended so that supercell measurements may be made. The values of the strength of a boron carbide control rod and a stainless steel loop tube have been obtained in this way. The strength of such an inhomogeneous poison in the lattice is expressed as the difference in the supercell multiplication factor k∝ with and without the poison in the supercell. This difference is the same quantity which is obtained in the usual reactor cell calculation. The fuel temperature coefficient of for this cluster has also been measured between 50 and 500°C. The coefficient obtained is temperature dependent. The more important of the lattice parameters for the 1.8% enriched fuel are = 1.146 ± 0.004,f = 0.809 ± 0.005, p28 = 0.824 ± 0.006, ∈ = 1.019 ± 0.002, Δk (control rod -16 cell supercell) = -0.157 ± 0.012, Δk (empty loop tube -9 cell supercell) = -0.117 ± 0.011, and (l/k∞)(dk∞/dT) = -(0.68 ± 0.05) X 10-3T-1/2(oK)-1 For the 2.6% enriched fuel, results are k∞ = 1.256 ± 0.009 and f = 0.845 ± 0.006.