ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
M. Assawaroongruengchot, G. Marleau
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 37-52
Technical Paper | doi.org/10.13182/NSE07-A2643
Articles are hosted by Taylor and Francis Online.
Most perturbation theory calculation methods for neutron transport problems are based on the assumption that the solution to the adjoint transport problem is known. Here we develop an adjoint transport solution based on the method of cyclic characteristics (MOCC) for two-dimensional fuel assembly problems with isotropic scattering. The main advantages of the MOCC method are (a) it requires lower computing time and memory spaces than the collision probability (CP) method and (b) it does not require the boundary surface currents as for the method of characteristics with isotropic tracking. In the MOCC the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The mathematical relationship between the adjoint function obtained by CP method and the adjoint function by MOCC is also presented. In order to speed up the MOCC solution algorithm, group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. In addition, a combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of large numbers of variables storing tracking-line data and exponential values, is proposed to reduce the computing time. To demonstrate the efficiency of these algorithms, calculations are performed on a 17 × 17 pressurized water reactor lattice, a 37-pin CANDU [Canada deuterium uranium reactor] cell, and the Watanabe-Maynard benchmark. Comparisons of adjoint function and keff results obtained by the MOCC and the CP method are presented.