ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Assawaroongruengchot, G. Marleau
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 37-52
Technical Paper | doi.org/10.13182/NSE07-A2643
Articles are hosted by Taylor and Francis Online.
Most perturbation theory calculation methods for neutron transport problems are based on the assumption that the solution to the adjoint transport problem is known. Here we develop an adjoint transport solution based on the method of cyclic characteristics (MOCC) for two-dimensional fuel assembly problems with isotropic scattering. The main advantages of the MOCC method are (a) it requires lower computing time and memory spaces than the collision probability (CP) method and (b) it does not require the boundary surface currents as for the method of characteristics with isotropic tracking. In the MOCC the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The mathematical relationship between the adjoint function obtained by CP method and the adjoint function by MOCC is also presented. In order to speed up the MOCC solution algorithm, group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. In addition, a combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of large numbers of variables storing tracking-line data and exponential values, is proposed to reduce the computing time. To demonstrate the efficiency of these algorithms, calculations are performed on a 17 × 17 pressurized water reactor lattice, a 37-pin CANDU [Canada deuterium uranium reactor] cell, and the Watanabe-Maynard benchmark. Comparisons of adjoint function and keff results obtained by the MOCC and the CP method are presented.