ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Louis M. Shotkin, Frederick H. Abernathy
Nuclear Science and Engineering | Volume 15 | Number 2 | February 1963 | Pages 197-212
Technical Paper | doi.org/10.13182/NSE63-A26419
Articles are hosted by Taylor and Francis Online.
The stability of the thermal flux in a reflected slab reactor due to xenon and temperature reactivity feedback is investigated using perturbation theory. A reactor with spatially constant fuel, equilibrium flux, and materials in the core is examined under various reactivity feedback situations. Stability criteria are given along with associated oscillation periods for the condition of neutrally stable equilibrium, i.e., continuous oscillation of the perturbed flux. The conditions for interaction of the xenon and temperature reactivity feedback are shown for both long and short temperature delays; the effect of delayed neutrons being considered when appropriate. A cosine fuel distribution is found to be necessary to give spatially constant equilibrium flux and this cosine fuel model is shown to predict slightly more stable conditions than the flat fuel model. Coupling of the first two (even or odd) excited modes is shown to occur (for a constant power density model) in large, high flux reactors, leading to more unstable conditions than with no coupling.