ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
B.L. Palowitch, F. S. Frantz, Jr.
Nuclear Science and Engineering | Volume 15 | Number 2 | February 1963 | Pages 146-157
Technical Paper | doi.org/10.13182/NSE63-A26414
Articles are hosted by Taylor and Francis Online.
The relative effective resonance integral of U238 has been measured as a function of temperature for uranium and UO2 cylinders, 0.986 and 0.973 cm diam, respectively. The Doppler coefficients α and β are defined by: RIo refers to the effective resonance integral (excluding 1/υ absorption) at 20°C, and to and To are 20°C and 293°K respectively. The measurements utilized the activation technique in which the induced Np239 activity of a uranium bearing specimen was determined as a function of specimen temperature during irradiation. Measured values for α and β corrected for thermal expansion, 1/υ absorption, fission activity and a deviation from a 1 /E epithermal flux are for metal α = 1.14 ± 0.07 × 10 -4/oC, β = 0.53 ± 0.03 × 10-2/(°K)1/2 and for oxide α = 1.34 ± 0.11 × 10-4/°C, β = 0.69 ± 0.06 × 10-2/ (°K)1/2. The temperature increments for which these values have been obtained were 580 and 950°C for uranium metal and oxide respectively. The results presented in this report are considered to be consistent with the results of other experiments in which the activation technique was used but are lower than theoretical predictions given by Nordheim and Rosén.