ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
B.L. Palowitch, F. S. Frantz, Jr.
Nuclear Science and Engineering | Volume 15 | Number 2 | February 1963 | Pages 146-157
Technical Paper | doi.org/10.13182/NSE63-A26414
Articles are hosted by Taylor and Francis Online.
The relative effective resonance integral of U238 has been measured as a function of temperature for uranium and UO2 cylinders, 0.986 and 0.973 cm diam, respectively. The Doppler coefficients α and β are defined by: RIo refers to the effective resonance integral (excluding 1/υ absorption) at 20°C, and to and To are 20°C and 293°K respectively. The measurements utilized the activation technique in which the induced Np239 activity of a uranium bearing specimen was determined as a function of specimen temperature during irradiation. Measured values for α and β corrected for thermal expansion, 1/υ absorption, fission activity and a deviation from a 1 /E epithermal flux are for metal α = 1.14 ± 0.07 × 10 -4/oC, β = 0.53 ± 0.03 × 10-2/(°K)1/2 and for oxide α = 1.34 ± 0.11 × 10-4/°C, β = 0.69 ± 0.06 × 10-2/ (°K)1/2. The temperature increments for which these values have been obtained were 580 and 950°C for uranium metal and oxide respectively. The results presented in this report are considered to be consistent with the results of other experiments in which the activation technique was used but are lower than theoretical predictions given by Nordheim and Rosén.