ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Sara A. Pozzi, Imre Pázsit
Nuclear Science and Engineering | Volume 154 | Number 3 | November 2006 | Pages 367-373
Technical Paper | doi.org/10.13182/NSE06-A2639
Articles are hosted by Taylor and Francis Online.
In a recent paper, a simple analytical model to describe the statistics of the number of scattering collisions undergone by fast neutrons as they slow down until they are absorbed was presented. In that study, it was assumed that the moderator was infinite and homogeneous and accounted for scattering and absorption by a single nuclear species. In the present paper, that methodology is extended to the more realistic case of neutron slowing down in a homogeneous mixture. The formulas are derived and evaluated numerically, and the results are found to be in very good agreement with corresponding Monte Carlo simulations. The average value of the number of collisions that a neutron undergoes before being captured is computed. The results for a capture-gated detector composed of hydrogen, carbon, and boron are discussed.