ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Aldo Dall'Osso
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 241-246
Technical Paper | doi.org/10.13182/NSE06-A2630
Articles are hosted by Taylor and Francis Online.
The accuracy of a neutronics model depends not only on the validity of the equations that are solved but also on the quality of the cross-section model. This last is currently constituted by a set of correlations, the parameterized tables, relating the data of the neutronics problem to the local conditions. The more the correlations represent the local conditions, the more the results will be accurate. For a simulation model, this means that the results will be closer to the measurements. The goal of the data identification method presented is to solve a constrained inverse problem and to obtain the parameters of some further correlations that will enhance the accuracy of the results. The constraint imposed minimizes the error committed in solving the diffusion equation, using as reference the results of a more accurate computer code or the measurements performed for in-core flux maps. Some purely numerical examples and an application in conjunction with in-core measurements illustrate the method.