ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Gerald, T. Petersen, Manson, Benedict
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 90-97
Technical Paper | doi.org/10.13182/NSE63-A26267
Articles are hosted by Taylor and Francis Online.
The relative volatility or separation factor for deuterium enrichment in ammonia distillation was measured at pressures of 250, 375, 500, 600, and 760 mm Hg and at deuterium concentrations of 0.10, 0.24, 0.42, and 0.58 mole fraction deuterium. The measurements are summarized by the following equation: In (α) = (0.0395 ±0.0004) − (0.0128 ±0.0029) (x− 0.424) − (0.01246 ± 0.00065) (lnπ/760 mm Hg) where α = separation factor π = system pressure mm Hg x = mole fraction deuterium. It is interesting to note that a dependence on the composition was observed. This is not predicted by the normal method of calculating the separation factor from the vapor pressure ratio However, the magnitude of the separation factor and its dependence on pressure are in good agreement with the vapor pressure ratio predictions (α = 1.042 at 1 atm). This information is helpful in predicting costs of heavy water production by ammonia distillation. It has been stated by Barr and Drews (3) that ammonia distillation would be competitive with other developed methods only if the actual separation factor was at least 1.062 at low deuterium concentration. Since the separation factor observed was only 1.042 at atmospheric pressure, ammonia distillation is not an economic method for producing heavy water. Deutero-ammonia was synthesized by isotopic exchange between natural ammonia and heavy water. Equilibrium determinations were made using an Othmer still modified for low temperature operation. The ammonia samples were analyzed for deuterium content by converting them to water by passage over hot copper oxide, followed by a differential density determination using the falling drop method.