ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. L. Montet
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 69-80
Technical Paper | doi.org/10.13182/NSE63-A26265
Articles are hosted by Taylor and Francis Online.
The electrical resistances and Hall coefficients of polycrystalline graphite, neutron irradiated graphite, chemically doped graphite, and neutron irradiated chemically doped graphite have been measured over a range of magnetic fields at liquid nitrogen and liquid helium temperatures. The empirical equivalence of acceptor concentrations in irradiated graphite and in chemically doped graphite obtained by matching Hall coefficients has been found to be a function of the temperature of measurement. This observation may be explained in terms of temperature dependent trapping efficiencies of the electron traps introduced chemically or by neutron irradiation. This explanation affords some understanding of the electrical properties of the complicated neutron irradiated chemically doped graphite. The temperature variation of the resistances and Hall coefficients of the graphites studied may be reasonably well understood on the basis of the phenomenological theory of transport properties. Anomalous variations with magnetic field of resistances and Hall coefficients were observed at low temperature in some of the graphites studied; no satisfactory explanation has been found for these effects, although a recently introduced theory provides a plausible explanation for the observed magnetoresistance of polycrystalline graphite at liquid helium temperature.