ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. L. Montet
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 69-80
Technical Paper | doi.org/10.13182/NSE63-A26265
Articles are hosted by Taylor and Francis Online.
The electrical resistances and Hall coefficients of polycrystalline graphite, neutron irradiated graphite, chemically doped graphite, and neutron irradiated chemically doped graphite have been measured over a range of magnetic fields at liquid nitrogen and liquid helium temperatures. The empirical equivalence of acceptor concentrations in irradiated graphite and in chemically doped graphite obtained by matching Hall coefficients has been found to be a function of the temperature of measurement. This observation may be explained in terms of temperature dependent trapping efficiencies of the electron traps introduced chemically or by neutron irradiation. This explanation affords some understanding of the electrical properties of the complicated neutron irradiated chemically doped graphite. The temperature variation of the resistances and Hall coefficients of the graphites studied may be reasonably well understood on the basis of the phenomenological theory of transport properties. Anomalous variations with magnetic field of resistances and Hall coefficients were observed at low temperature in some of the graphites studied; no satisfactory explanation has been found for these effects, although a recently introduced theory provides a plausible explanation for the observed magnetoresistance of polycrystalline graphite at liquid helium temperature.