ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
O. E. Dwyer
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 52-57
Technical Paper | doi.org/10.13182/NSE63-A26263
Articles are hosted by Taylor and Francis Online.
Theoretical equations have been derived for calculating heat transfer coefficients for a fluid flowing through a concentric annulus for the following two cases: (A) constant and equal heat fluxes from both walls, and (B) constant, but unequal, heat fluxes from the walls, with equal wall temperatures at a given axial position along an annular channel. In the derivations, the conditions of fully-established velocity and temperature profiles, and independence of physical properties with temperature variation across the flow channel, were assumed. The only geometrical parameter in this general case is the radius ratio r2/r1, and in the study it was varied from 1.0 to 10.0.