ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Zhaopeng Zhong, Thomas J. Downar, Yunlin Xu, Mark L. Williams, Mark D. DeHart
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 190-201
Technical Paper | doi.org/10.13182/NSE06-3
Articles are hosted by Taylor and Francis Online.
A method is presented to obtain a continuous-energy representation of the neutron spectrum using two-dimensional discrete ordinates calculations with a combination of multigroup (MG) and pointwise (PW) nuclear data. This provides the capability of determining the fine-structure energy distribution of the angular flux and flux moments within the resonance range as well as the smoother spectrum in the high- and thermal-energy ranges. The continuous-energy flux spectra can be utilized as problem-dependent weighting functions within the whole two-dimensional domain to process self-shielded MG cross sections for reactor physics and/or criticality safety analysis so that the two-dimensional heterogeneous effect in the resonance calculation can be fully considered. This calculational method has been implemented in a new PW transport code called GEMINEWTRN that may be executed as a module in the SCALE computer code system. Example applications using ENDF/B cross-section data are presented to study the two-dimensional heterogeneous effect in the resonance calculations.