ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alfred L. Mowery, Jr., Raymond L. Murray
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 401-413
Technical Paper | doi.org/10.13182/NSE62-A26249
Articles are hosted by Taylor and Francis Online.
This paper is devoted to the exposition and illustration of a technique the authors have designated as the generalized variational method (GVM). The analysis is based on the variational approach and is an outgrowth of investigations in the hyper circle method. In essence, the GVM consists of considering the trial functions that appear symmetrically (quadratically) in a positive-semidefinite variational principle as independent functions. A proposition was proved to demonstrate generally that the approximate eigenvalue obtained from the GVM is at least as accurate as the geometric average of the associated approximate eigenvalues. Also, a conjecture was proposed that the accuracy of the generalized variational eigenvalue is comparable to that of a variational result employing a trial function incorporating the dimensionality of both associated trial functions. The application of the GVM to the perturbation-variational method yielded results that firmly establish the method. The generalized method completes the perturbation-variational method by providing the formerly missing even-order approximate results. For illustration, the GVM was employed to solve a bare reactor with a grey control sheet. Using Ray-leigh-Ritz optimized cosine series and optimized pyramid functions as associated solutions, the generalized variational eigenvalue accuracy indicated the effective combination of the dimensionalities of the associated trial functions.