ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Alfred L. Mowery, Jr., Raymond L. Murray
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 401-413
Technical Paper | doi.org/10.13182/NSE62-A26249
Articles are hosted by Taylor and Francis Online.
This paper is devoted to the exposition and illustration of a technique the authors have designated as the generalized variational method (GVM). The analysis is based on the variational approach and is an outgrowth of investigations in the hyper circle method. In essence, the GVM consists of considering the trial functions that appear symmetrically (quadratically) in a positive-semidefinite variational principle as independent functions. A proposition was proved to demonstrate generally that the approximate eigenvalue obtained from the GVM is at least as accurate as the geometric average of the associated approximate eigenvalues. Also, a conjecture was proposed that the accuracy of the generalized variational eigenvalue is comparable to that of a variational result employing a trial function incorporating the dimensionality of both associated trial functions. The application of the GVM to the perturbation-variational method yielded results that firmly establish the method. The generalized method completes the perturbation-variational method by providing the formerly missing even-order approximate results. For illustration, the GVM was employed to solve a bare reactor with a grey control sheet. Using Ray-leigh-Ritz optimized cosine series and optimized pyramid functions as associated solutions, the generalized variational eigenvalue accuracy indicated the effective combination of the dimensionalities of the associated trial functions.