ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Alfred L. Mowery, Jr., Raymond L. Murray
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 401-413
Technical Paper | doi.org/10.13182/NSE62-A26249
Articles are hosted by Taylor and Francis Online.
This paper is devoted to the exposition and illustration of a technique the authors have designated as the generalized variational method (GVM). The analysis is based on the variational approach and is an outgrowth of investigations in the hyper circle method. In essence, the GVM consists of considering the trial functions that appear symmetrically (quadratically) in a positive-semidefinite variational principle as independent functions. A proposition was proved to demonstrate generally that the approximate eigenvalue obtained from the GVM is at least as accurate as the geometric average of the associated approximate eigenvalues. Also, a conjecture was proposed that the accuracy of the generalized variational eigenvalue is comparable to that of a variational result employing a trial function incorporating the dimensionality of both associated trial functions. The application of the GVM to the perturbation-variational method yielded results that firmly establish the method. The generalized method completes the perturbation-variational method by providing the formerly missing even-order approximate results. For illustration, the GVM was employed to solve a bare reactor with a grey control sheet. Using Ray-leigh-Ritz optimized cosine series and optimized pyramid functions as associated solutions, the generalized variational eigenvalue accuracy indicated the effective combination of the dimensionalities of the associated trial functions.