ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
R. K. Lane, L. W. Nordheim, J. B. Sampson
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 390-396
Technical Paper | doi.org/10.13182/NSE62-A26247
Articles are hosted by Taylor and Francis Online.
The problem of resonance absorption is investigated for materials in which the absorber is lumped in small grains imbedded in a matrix of moderator. The point of departure is to take the grains themselves as the fundamental elements in heterogeneous geometry. It is important to treat correctly the mutual shielding between the grains, that is, the Dancoff correction. Introduction of this correction solves immediately the case of macroscopically homogeneous assemblies. The result can be expressed in terms of “shielded” cross sections for the lumped absorber. Utilization of this concept permits also the treatment of additional macroscopic heterogeneities. Existing calculational methods can be employed if the macroscopic heterogeneities are treated with the help of the equivalence relations, and this procedure permits an adequate comparison between the grain structured and homogeneous compounds. Numerical examples are given in Section IV. The average shielding is nearly linear in the grain size. For grains of ThO2 in a graphite matrix, the reduction is about 15% for grains of 0.06 cm diam. On the other hand, the temperature derivative of the resonance integral is increased slightly, particularly at higher temperatures. One can, therefore, either maintain the Doppler coefficient of reactivity with a reduced resonance absorption or increase the Doppler coefficient for the same resonance absorption.