ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Harold P. Smith, Jr.
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 371-379
Technical Paper | doi.org/10.13182/NSE62-A26244
Articles are hosted by Taylor and Francis Online.
A previous work on open loop dynamics of nuclear rocket engines (1) is expanded to include integral temperature error feedback control of reactivity and proportional pressure error feedback control of propellant flow with first order lags placed between the desired controller positions and the actual positions. The resulting series of ordinary, nonlinear, differential equations are approximated by a linear model in order to analyze the low-frequency dynamics. It is shown that the low and high frequencies may be decoupled and that the proposed method of control is stable for small variations away from any point of steady-state operation. Algebraic equations, in terms of design parameters, are derived for control settings which yield optimum response characteristics. It is further shown that the asymptotic response is improved by reduction of the mechanical inertia of the turbopump but is independent of the thermal inertia of the core. The analysis is corroborated by analog simulation of the nonlinear model for the case of low-power-high-power transition, using only feedback control for flow and reactivity variation.