ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Vincent A. Mousseau, Dana A. Knoll
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 174-189
Technical Paper | doi.org/10.13182/NSE06-A2624
Articles are hosted by Taylor and Francis Online.
A study of the temporal accuracy of a variety of first- and second-order time-integration methods applied to two-dimensional, multimaterial, nonequilibrium, radiation diffusion simulations is presented. These methods are categorized by their temporal order of accuracy, whether the algorithm includes operator splitting, and whether the algorithm includes linearizations. Results are presented that simultaneously measure accuracy and efficiency of the different methods on two different test problems. The two test problems are designed to represent an easy problem, where different approximations may be accurate, and a hard test problem that will stress the different solution algorithms. Results show the importance of being second-order accurate in time and the importance of time-step control.