ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Richard A. Condon, Neil C. Sher
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 327-338
Technical Paper | doi.org/10.13182/NSE62-A26239
Articles are hosted by Taylor and Francis Online.
A study was conducted to establish the suitability of the gamma attenuation method for measuring void fractions in a parallel rod array. A lucite mock-up was used to evaluate the accuracy of the method; the error was found to vary from 7 to 13% depending upon the measuring method. Data were taken on an air-water system flowing vertically upward at atmospheric pressure, and were found to agree reasonably well with similar data for rectangular channels and round tubes. The results of this study are being used to guide the execution of the 600 psia boiling water, void experiments which are part of the heat transfer development for the Pathfinder Boiling Water-Integral Superheating Reactor.