ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
J. R. Beeler
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 254-265
doi.org/10.13182/NSE62-A26215
Articles are hosted by Taylor and Francis Online.
Monte Carlo computational experiments were used to study the diffusion anisotropy of fast and slow neutrons in singly- and doubly-periodic, two-region reactor lattices. In two-region systems, it is shown that the separation of the anisotropy factor into a part representing mean free path discontinuity and a part representing absorption probability discontinuity is physically meaningful. In the singly-periodic lattice, the anisotropy factor for fast neutrons was greater than unity, while that for slow neutrons was less than unity. It is possible, however, for the slow neutron anisotropy factor to exceed unity in doubly-periodic lattices. The anisotropy extreme, in the singly-periodic lattice, occurred when the albedo of the moderator slab was equal to that of the fuel slab.