ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Joel H. Ferziger
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 244-248
doi.org/10.13182/NSE62-A26213
Articles are hosted by Taylor and Francis Online.
An extension of the methods for computing resonance integrals given by Chernick and Vernon (8) and Nordheim et al. (9) to the case of nonuniform temperature distributions in the absorber is given. Formally, the procedure is quite similar to the previous work and utilizes the same approximations: absorbed neutrons are broken into two groups according to whether their previous collisions were in the absorber or in the moderator; both the narrow resonance (NR) and infinite mass (NRIA) approximations are developed. The effect of nonuniform temperature distribution is to modify the escape probabilities required. The present calculation requires escape probabilities for lumps which contain nonuniform sources and/or cross sections. Methods of computing these escape probabilities are presented.