ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Marvin Tetenbaum, Larry Mishler, Glenn Schnizlein
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 230-238
doi.org/10.13182/NSE62-A26211
Articles are hosted by Taylor and Francis Online.
Because ignition temperature is not an intrinsic property of a substance, the investigation reported in this paper was undertaken to measure the ignition behavior of uranium powder under well-defined boundary conditions such that quantitative predictions are possible. The ignition behavior of uranium powder has been found to be dependent on specific area of powder fraction, rate of heating, and geometry of sample. For a given mesh size powder and heating rate, constant limiting ignition temperature values are obtained practically independent of container size, when the powder bed exceeds a critical height. Critical height values are found to increase with particle size of powder; for a given particle size powder, critical height values decrease with heating rate. On the basis of the Frank-Kamenetskii theory of thermal explosions, when used in a restricted manner, limiting ignition temperature values for uranium powder can be estimated using critical height values as the significant geometrical dimension of the container. These calculated ignition temperatures are in reasonable agreement with those obtained with our experimental apparatus. The ignition behavior of uranium powder can be adequately described by converting isothermal expressions to a rising temperature basis according to the treatment of Murray, Buddery, and Taylor.