ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Marvin Tetenbaum, Larry Mishler, Glenn Schnizlein
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 230-238
doi.org/10.13182/NSE62-A26211
Articles are hosted by Taylor and Francis Online.
Because ignition temperature is not an intrinsic property of a substance, the investigation reported in this paper was undertaken to measure the ignition behavior of uranium powder under well-defined boundary conditions such that quantitative predictions are possible. The ignition behavior of uranium powder has been found to be dependent on specific area of powder fraction, rate of heating, and geometry of sample. For a given mesh size powder and heating rate, constant limiting ignition temperature values are obtained practically independent of container size, when the powder bed exceeds a critical height. Critical height values are found to increase with particle size of powder; for a given particle size powder, critical height values decrease with heating rate. On the basis of the Frank-Kamenetskii theory of thermal explosions, when used in a restricted manner, limiting ignition temperature values for uranium powder can be estimated using critical height values as the significant geometrical dimension of the container. These calculated ignition temperatures are in reasonable agreement with those obtained with our experimental apparatus. The ignition behavior of uranium powder can be adequately described by converting isothermal expressions to a rising temperature basis according to the treatment of Murray, Buddery, and Taylor.