ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
J. H. COOBS
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 53-68
Technical Paper | doi.org/10.13182/NSE62-A26199
Articles are hosted by Taylor and Francis Online.
An extensive experimental program was conducted on the fuel and cladding for the EGCR fuel elements to establish the adequacy of the design. Methods of inspecting the components and manufacturing the fuel assemblies were developed or perfected. Studies were also conducted on the physical and mechanical properties of the type 304 stainless steel cladding and the UO2 fuel pellets to provide a basis for predicting the behavior of the elements in service. Data from heat treating of neutron-activated fuel showed that fission-gas release will not be a limiting factor in this design. Out-of-pile thermal-cycling studies on simulated fuel elements established that axial growth of fuel elements at a predictable rate can be expected after the cladding collapses and contacts the fuel pellets, and that characteristic cracking of the UO2 pellets occurs without displacement of fuel. Impurities in the helium coolant were observed to cause oxidation and carburization of the cladding, but the extent of these reactions can be controlled by regulating the ratios of the impurities. Creep tests at several temperatures indicate that, with the exception of hydrogen, the various impurities will have little detrimental effect on the stress-rupture strength of the cladding. Tube-burst tests in air yielded data that permit a prediction of the life of the fuel element in case of loss of coolant pressure and when compared with results of similar in-pile experiments indicate that irradiation effects reduce the stress-rupture strength of the cladding by as much as 25%.