ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. J. KEPES, L. A. MIKOLEIT, R. G. SERENKA
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 11-16
Technical Paper | doi.org/10.13182/NSE62-A26194
Articles are hosted by Taylor and Francis Online.
Differential measurements of the epicadmium and total U238 radiative capture have been obtained in thin natural uranium-niobium plates and compared to several theoretical models. These fuel elements were located in Zircaloy-2 boxes, which in turn were placed in a light water moderated critical assembly at ambient temperatures. A Monte Carlo calculation with the assumption of a smooth 3.3 b contribution predicted the spatial epicadmium activation through a natural uranium fuel plate positioned in the center of the Zircaloy-2 box. It was observed that the integrated epicadmium U238 radiative capture in the end fuel plate of the Zircaloy-2 box was 1.27 times the capture in the center fuel plate. This sharp end-to-center dipping was due to a water channel located next to the fuel box. An analytic calculation based on the thin resonance theory of Stein gave a value of 1.16 for this end-to-center ratio. The experimental integrated values for ρ28, the ratio of epicadmium to thermal captures, were 0.893 ± 0.009 in the center fuel plate, 0.765 ± 0.014 in the second from the end plate, and 0.851 ± 0.011 in the end plate. The value of ρ28 obtained using a diffusion theory approximation for these plates was 4.7%, 7.5%, and 21.7% below experiment. The prediction in the end plate was improved when the Stein theory was utilized to calculate the resonance capture.