ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. R. CHELLEW, R. K. STEUNENBERG
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE62-A26192
Articles are hosted by Taylor and Francis Online.
Swelling and rare gas release of irradiated prototype EBR-II fuel pins during heating have been studied with material containing 320 to 830 ppm of these gases (0.2 to 0.6 at. % burnup). Data on both phenomena were obtained at varied heating rates and with stepwise heating to successively higher temperature levels. In each experiment, over 99% of the rare gases was released before the alloy was fully molten at about 1080°C. Within experimental error the behaviors of xenon-133 and krypton-85 were identical. Below 750°C, gas release was slow; above 750°C, the rate increased sharply. The quantity of gas evolved as a function of time at constant temperatures to 850°C appeared to be directly proportional to the time rather than the square root of time as predicted by diffusion theory. Swelling of the alloy showed much the same type of temperature dependence as the release of rare gas. For all heating patterns, pin swelling was most pronounced above 750°C, reaching a maximum diametral increase of about 47% as the pin melted. A brief comparison between the release of rare gas from this alloy and that from other metallic fuels is made. The effects of this phenomenon and associated swelling on the melt refining process envisioned for recovery of fuel from the first core loading of EBR-II are discussed.