ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
N. R. CHELLEW, R. K. STEUNENBERG
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE62-A26192
Articles are hosted by Taylor and Francis Online.
Swelling and rare gas release of irradiated prototype EBR-II fuel pins during heating have been studied with material containing 320 to 830 ppm of these gases (0.2 to 0.6 at. % burnup). Data on both phenomena were obtained at varied heating rates and with stepwise heating to successively higher temperature levels. In each experiment, over 99% of the rare gases was released before the alloy was fully molten at about 1080°C. Within experimental error the behaviors of xenon-133 and krypton-85 were identical. Below 750°C, gas release was slow; above 750°C, the rate increased sharply. The quantity of gas evolved as a function of time at constant temperatures to 850°C appeared to be directly proportional to the time rather than the square root of time as predicted by diffusion theory. Swelling of the alloy showed much the same type of temperature dependence as the release of rare gas. For all heating patterns, pin swelling was most pronounced above 750°C, reaching a maximum diametral increase of about 47% as the pin melted. A brief comparison between the release of rare gas from this alloy and that from other metallic fuels is made. The effects of this phenomenon and associated swelling on the melt refining process envisioned for recovery of fuel from the first core loading of EBR-II are discussed.