ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mikio Sakai, Kazuya Shibata, Seiichi Koshizuka
Nuclear Science and Engineering | Volume 154 | Number 1 | September 2006 | Pages 63-73
Technical Paper | doi.org/10.13182/NSE06-A2618
Articles are hosted by Taylor and Francis Online.
Particle dynamics of nuclear fuel material has not been considered in conventional nuclear criticality evaluations. However, the particle motion influences nuclear criticality significantly. In the present study, the criticality calculation is combined with the discrete element method (DEM) to investigate the effects of the particle macroscopic behavior on nuclear criticality. Particle motion is analyzed in a rotating drum by the DEM, and then, the nuclear calculation is carried out. This paper focuses on particle size distribution, size segregation, and change of surface area of the particle bed. The particle size distribution has an important influence on the nuclear criticality evaluation because it affects not only the particle movement but also the atomic number densities in the bed. The surface area of the particle bed shows a close correlation with the multiplication factor. On the other hand, the size segregation does not have a significant effect on nuclear criticality.