ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Satoru Katsuragi
Nuclear Science and Engineering | Volume 13 | Number 3 | July 1962 | Pages 215-229
Technical Paper | doi.org/10.13182/NSE62-A26156
Articles are hosted by Taylor and Francis Online.
The thermalization of neutrons in a finite medium is investigated to give a foundation for reactor calculations. The theory has been made free from the assumption that the energy spectrum of the flux is uniform throughout the medium. The flux is composed of several components, each having a definite spectrum and an associated diffusion length which are to be determined as an eigenmode and a corresponding eigenvalue respectively. It is seen that the Hurwitz-Nelkin spectrum derived under the assumption of flux separability corresponds to the component having the largest diffusion length, which is reached asymptotically in the region far from the source or the boundary. In the case of a noncapturing medium the eigenvalue problem determining diffusion lengths has been solved rigorously, and for weak absorbers a perturbation method has been developed. It is pointed out that the spectrum in a reactor is constituted by superposing the Hurwitz-Nelkin spectrum upon the others having smaller diffusion lengths, the latter being the contribution from the source distributed continuously near the point considered.