ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Satoru Katsuragi
Nuclear Science and Engineering | Volume 13 | Number 3 | July 1962 | Pages 215-229
Technical Paper | doi.org/10.13182/NSE62-A26156
Articles are hosted by Taylor and Francis Online.
The thermalization of neutrons in a finite medium is investigated to give a foundation for reactor calculations. The theory has been made free from the assumption that the energy spectrum of the flux is uniform throughout the medium. The flux is composed of several components, each having a definite spectrum and an associated diffusion length which are to be determined as an eigenmode and a corresponding eigenvalue respectively. It is seen that the Hurwitz-Nelkin spectrum derived under the assumption of flux separability corresponds to the component having the largest diffusion length, which is reached asymptotically in the region far from the source or the boundary. In the case of a noncapturing medium the eigenvalue problem determining diffusion lengths has been solved rigorously, and for weak absorbers a perturbation method has been developed. It is pointed out that the spectrum in a reactor is constituted by superposing the Hurwitz-Nelkin spectrum upon the others having smaller diffusion lengths, the latter being the contribution from the source distributed continuously near the point considered.