ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Satoru Katsuragi
Nuclear Science and Engineering | Volume 13 | Number 3 | July 1962 | Pages 215-229
Technical Paper | doi.org/10.13182/NSE62-A26156
Articles are hosted by Taylor and Francis Online.
The thermalization of neutrons in a finite medium is investigated to give a foundation for reactor calculations. The theory has been made free from the assumption that the energy spectrum of the flux is uniform throughout the medium. The flux is composed of several components, each having a definite spectrum and an associated diffusion length which are to be determined as an eigenmode and a corresponding eigenvalue respectively. It is seen that the Hurwitz-Nelkin spectrum derived under the assumption of flux separability corresponds to the component having the largest diffusion length, which is reached asymptotically in the region far from the source or the boundary. In the case of a noncapturing medium the eigenvalue problem determining diffusion lengths has been solved rigorously, and for weak absorbers a perturbation method has been developed. It is pointed out that the spectrum in a reactor is constituted by superposing the Hurwitz-Nelkin spectrum upon the others having smaller diffusion lengths, the latter being the contribution from the source distributed continuously near the point considered.