ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. W. Deutsch
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 110-131
Technical Paper | doi.org/10.13182/NSE62-A26140
Articles are hosted by Taylor and Francis Online.
An engineering physics method of calculation has been used to plan and interpret critical experiments that simulate a boiling reactor and a boiling reactor with integral nuclear superheat. The boiler region contains aluminum-clad fuel rods of 1.85 wt.% U235 enrichment and some rods of natural enrichment. The superheater region is composed of rod-in-tube elements, the fuel rod having 3.41 wt.% U235 enrichment and a stainless steel clad. For core arrangements containing boiler fuel, the variations in reactivity and rod-by-rod power distributions produced by changing fuel, moderator, and neutron poison content within a fuel assembly have been determined; also, reactivity measurements involving cadmium and boron-stainless steel control rods have been used to derive effective epithermal transmission probabilities for these materials. For the boiler-superheater cores, the variations in reactivity, power regulation, and rod-by-rod power distribution produced by changing the boiler-superheater arrangements, and by voiding and flooding the superheater region, have been determined. For most of the core arrangements, the theoretical predictions have been carried out prior to the measurements. The comparison of theory with experiment indicates that the method has calculated reactivity and rod-by-rod power distributions to within the limits imposed by the uncertainty of experimental techniques, which includes uncertainties in core dimensions and compositions.