ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
R. W. Deutsch
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 110-131
Technical Paper | doi.org/10.13182/NSE62-A26140
Articles are hosted by Taylor and Francis Online.
An engineering physics method of calculation has been used to plan and interpret critical experiments that simulate a boiling reactor and a boiling reactor with integral nuclear superheat. The boiler region contains aluminum-clad fuel rods of 1.85 wt.% U235 enrichment and some rods of natural enrichment. The superheater region is composed of rod-in-tube elements, the fuel rod having 3.41 wt.% U235 enrichment and a stainless steel clad. For core arrangements containing boiler fuel, the variations in reactivity and rod-by-rod power distributions produced by changing fuel, moderator, and neutron poison content within a fuel assembly have been determined; also, reactivity measurements involving cadmium and boron-stainless steel control rods have been used to derive effective epithermal transmission probabilities for these materials. For the boiler-superheater cores, the variations in reactivity, power regulation, and rod-by-rod power distribution produced by changing the boiler-superheater arrangements, and by voiding and flooding the superheater region, have been determined. For most of the core arrangements, the theoretical predictions have been carried out prior to the measurements. The comparison of theory with experiment indicates that the method has calculated reactivity and rod-by-rod power distributions to within the limits imposed by the uncertainty of experimental techniques, which includes uncertainties in core dimensions and compositions.