ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Aurélien Ledieu, François Devreux, Philippe Barboux, Yves Minet
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 285-300
Technical Paper | doi.org/10.13182/NSE06-A2614
Articles are hosted by Taylor and Francis Online.
This paper proposes a contribution to understanding the alteration of high-level waste glasses. Numerical simulations, based on a Monte Carlo model, have been performed in parallel to static dissolution tests on simplified glasses. The leaching of borosilicate glasses has been investigated for various compositions containing three or four oxides, which have been derived from the French nuclear glass composition. The comparison between experimental data and simulations allows a precise understanding of the role of each element. The degree of alteration is shown to result from a competition between the irreversible extraction of the soluble species (boron and alkalis) and the reversible dissolution-condensation dynamics of silica, which make possible the restructuring of the surface layer into a passivating layer. The model explains how the surface layer is responsible for the blocking or, at least, for a considerable slowing down of the alteration. It is also able to explain a quite unexpected result, namely, the fact that the replacement of silica by more insoluble oxides (zirconium or aluminum oxides) actually induces an increase of the degree of alteration. This is due to the slowing down of the surface layer reconstruction that delays the alteration blocking.