ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
W. Ciechanowicz
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 75-79
Technical Paper | doi.org/10.13182/NSE62-A26136
Articles are hosted by Taylor and Francis Online.
The partial differential equations describing thermal processes in the reactor core are solved with respect to the coolant temperature in two cases: (1) when the fuel element temperature is averaged over the fuel element cross sectional area, (2) when the temperature distribution in this cross section is taken into account. It is assumed that the fuel element is of the rod type, there is no conduction in the longitudinal direction, and the inlet coolant temperature is a constant. The results obtained as solutions of these equations are discussed from the point of view of the application of an analogue computer to the exact simulation of thermal processes in the reactor core.