ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
P. G. Khubchandani, R. R. Sharma
Nuclear Science and Engineering | Volume 13 | Number 1 | May 1962 | Pages 40-45
Technical Paper | doi.org/10.13182/NSE62-A26126
Articles are hosted by Taylor and Francis Online.
The method given by Sjölander to calculate the one phonon differential inelastic cross section in the case of single crystals has been extended to polycrystals. Initially a graphical method is used. It is shown that the method could be converted to a form in which graphical calculations are replaced by an analytic expression. This is similar to the one obtained by Weinstock's approach, except for a factor. Calculations are made for polycrystalline lead for seven different scattering angles. The incident energy corresponds to neutron of temperature 13.6°K or wavelength 8.3 A. The temperature of lead is taken as 300°K. The mean energy of the scattered neutron is also calculated. Comparison with the method of incoherent approximation shows that the results obtained by this method are widely different from the method in which we sum over the allowed reciprocal vectors.