ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. T. Marti, J. P. Schneeberger
Nuclear Science and Engineering | Volume 13 | Number 1 | May 1962 | Pages 1-5
Technical Paper | doi.org/10.13182/NSE62-A26120
Articles are hosted by Taylor and Francis Online.
A critical system consisting of a regular infinite array of cylindrical channels of any cross section in a homogeneous multiplying medium is divided into equivalent cells of finite height. For such a cell two-group diffusion theory is applied with additional terms for the loss and gain of neutrons by the channels. The resulting integral-differential equations are solved with sufficient accuracy by the perturbation method, giving the reactivity loss due to the channels. With the method proposed the neutron leakage at the ends of the channels is included and deviations from the original unperturbed flux of the reactor without channels are taken into account. The results are compared with calculations based on the usual assumption of unperturbed flux, using the Behrens formula to compute the diffusion lengths. It is shown that reactivity calculations are also possible for arrays of finite extent, assuming separability of the flux in an axial and a radial part.