ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
J. T. Marti, J. P. Schneeberger
Nuclear Science and Engineering | Volume 13 | Number 1 | May 1962 | Pages 1-5
Technical Paper | doi.org/10.13182/NSE62-A26120
Articles are hosted by Taylor and Francis Online.
A critical system consisting of a regular infinite array of cylindrical channels of any cross section in a homogeneous multiplying medium is divided into equivalent cells of finite height. For such a cell two-group diffusion theory is applied with additional terms for the loss and gain of neutrons by the channels. The resulting integral-differential equations are solved with sufficient accuracy by the perturbation method, giving the reactivity loss due to the channels. With the method proposed the neutron leakage at the ends of the channels is included and deviations from the original unperturbed flux of the reactor without channels are taken into account. The results are compared with calculations based on the usual assumption of unperturbed flux, using the Behrens formula to compute the diffusion lengths. It is shown that reactivity calculations are also possible for arrays of finite extent, assuming separability of the flux in an axial and a radial part.