ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Melvin M. Levine, Meyer Steinberg
Nuclear Science and Engineering | Volume 12 | Number 4 | April 1962 | Pages 498-504
Technical Paper | doi.org/10.13182/NSE62-A26097
Articles are hosted by Taylor and Francis Online.
A general solution for optimum design of a radiaton chemical reaction vessel having an internal uniform triangular array of long, thin γ-ray sources is derived. The dependence of chemical production rate on amount and distribution of radioactive material and on size and shape of vessel is accounted for. Values for two general design parameters (vessel efficiency, ψ, and unit cell efficiency, µ) as a function of the vessel diameter and source spacing are given and include radiation buildup. The rate equation expressed as a power law of the radiation intensity is combined with information on the dependence of cost of reactor vessel on volume and pressure. The total cost of source material and vessels is then minimized to determine optimum size and number of vessels and the number of curies of radiation. The rate and cost equations are applied to the radiation polymerization of ethylene. By the methods outlined here it is possible to determine the parameters of an optimum irradiation assembly. The dimensions of the vessel and source array and the quantity of radioactive source material necessary for a given rate of production are determined for the minimum cost condition.