ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
C. B. Mills, G. I. Bell
Nuclear Science and Engineering | Volume 12 | Number 4 | April 1962 | Pages 469-473
Technical Paper | doi.org/10.13182/NSE62-A26093
Articles are hosted by Taylor and Francis Online.
In this paper we present calculated critical masses of homogeneous water-moderated assemblies containing low enrichment uranium. The calculations were made using the multigroup DSN code with eighteen energy groups. Effective absorption cross sections for U238 were computed with the “infinite mass” and “narrow resonance” approximations. The calculations have been compared with various experiments and rather good agreement was found. The results are presented as a parametric survey for U235/U atom ratios from 0.014 to 0.300 and for all H/U235 ratios for which criticality is possible. The decrease in critical radius with an infinite water reflector is also shown. We find that a bare homogeneous system with U235/U < 0.010 cannot be made critical at any H/U235 ratio.