ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Ch. Hellwig, K. Bakker, T. Ozawa, M. Nakamura, F. Ingold, L. Å. Nordström, Y. Kihara
Nuclear Science and Engineering | Volume 153 | Number 3 | July 2006 | Pages 233-244
Technical Paper | doi.org/10.13182/NSE06-A2609
Articles are hosted by Taylor and Francis Online.
Particle fuels such as sphere-pac and vipac have been considered as promising fuel systems for fast reactors because of their inherent potential in remote operation, cost reduction, and incineration of minor actinides or low-decontaminated plutonium. The FUJI test addresses the questions of fabrication of mixed-oxide (MOX) particle fuels with high Pu content (20%) and its irradiation behavior during the start-up phase. Four kinds of fuel, i.e., MOX sphere-pac, MOX vipac, MOX pellet, and Np-MOX sphere-pac, have been and will be simultaneously irradiated under identical conditions in the High Flux Reactor in Petten, Netherlands. First results show that the particle fuel undergoes a substantial structure change already at the very beginning of the irradiation when the maximum power is reached. The changes in microstructure, i.e., the formation of a central void and the densification of fuel, decrease the fuel central temperature. Thus, the fast and strong restructuring helps to prevent central fuel melting at high power levels.