ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Alan B. Rothman, Charles E. W. Ward
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 293-300
Technical Paper | doi.org/10.13182/NSE62-A26070
Articles are hosted by Taylor and Francis Online.
A new measurement of the effective resonance integral of thorium metal has been made, using reactor oscillator techniques. Fluctuations in reactor power level, caused by oscillation of cadmium-shielded cylindrical samples, were recorded on a strip chart. The signal was Fourier-analyzed, and the coefficient of the fundamental mode determined. For a constant shape reactivity input, the value of this coefficient for each sample is proportional to the effective resonance integral of the sample. The scattering effects of the thorium were determined by oscillating identical samples of lead, and were deducted from the results for the thorium. Absolute calibration of the oscillator measurements was provided by oscillating several dilute solutions of each of three standard absorbers : boron, indium, and gold. The effective resonance integrals of the thorium cylinders were then found to be given by the formula: where S/M is the surface-to-mass ratio of the samples in cm2/gm. The 1/v component of the resonance integral, 3.6 barns, has been removed from the first term of this formula.