ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
D. G. Jacobs
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 285-292
Technical Paper | doi.org/10.13182/NSE62-A26069
Articles are hosted by Taylor and Francis Online.
Although direct disposal to the ground has provided an effective means for the disposal of low- and intermediate-level waste streams, there is concern regarding the lack of control of the radionuclides once the wastes have been discharged to the ground. The use of a mineral-filled column is regarded as an inexpensive, yet efficient, alternative method for waste decontamination. For this purpose the cesium-exchange properties of various grades of commercially available vermiculite were investigated and compared to other natural ion-exchange materials. Elucidation of the reaction mechanism has led to improvement of the cesium-sorptive properties, either by potassium treatment or heat treatment of the vermiculite or by addition of potassium to the waste stream. Studies of the kinetics and the thermodynamics of the exchange reaction permit extrapolation of the data for consideration of the extended use of vermiculite columns for decontaminating other waste streams. Data obtained from bench-scale and field-scale (10-ft long, 2-in. i.d.) column studies compare closely with those obtained by slurry studies. The breakthrough curves obtained were sufficiently steep to indicate that the partial cesium-sorptive capacity of a vermiculite column would be completely utilized if two columns were operated in series. A column 10 ft long and 10 ft in diameter filled with Na-treated vermiculite is estimated to be capable of decontaminating more than 5 × 105 gal of ORNL intermediate-level waste. Larger volumes of waste streams having lower concentrations of stable salts could be decontamined with respect to cesium and strontium.