ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
D. H. Jones, R. P. Christman
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 276-284
Technical Paper | doi.org/10.13182/NSE62-A26068
Articles are hosted by Taylor and Francis Online.
The first Shippingport seed-blanket core was operated for 5530 equivalent full power hours at equilibrium xenon and samarium conditions. The comparison of physics measurements and calculations presented are those applicable to the first core containing the initial seed material. A three-dimensional diffusion theory depletion analysis indicates that this calculational model describes with reasonable accuracy the directly observed and inferred reactor parameters examined over core lifetime. The reactor parameters compared include: criticality, reactivity lifetime, xenon transient behavior, temperature coefficients, and blanket power fraction. While the primary emphasis is on the three-dimensional calculational and experimental comparisons, the results of one and two-dimensional diffusion theory depletion calculations are included to indicate their relative merit. The results indicate that such reactor parameters as excess reactivity, temperature coefficients, and blanket power fraction, may be estimated to within approximately the same accuracy by one and two-dimensional depletion models as by this particular three-dimensional model. This conclusion must be qualified by noting the crudeness employed in the three-dimensional depletion model.