ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. E. MacPherson, Jr., H. D. Stuart
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 225-233
Technical Paper | doi.org/10.13182/NSE62-A26061
Articles are hosted by Taylor and Francis Online.
Gas-cooled reactor systems can benefit from the use of internal metallic-foil insulations which take advantage of the relatively low thermal conductivity of the coolant gas itself. Tests have shown that, for design purposes, Nusselt, Grashof, and Prandtl number correlations for vertical gas spaces form a good basis for finding optimum foil spacing and for approximating insulation performance. Tests were conducted chiefly on a spirally wrapped foil arrangement in which in. spacing between adjacent foil turns was maintained by strips of corrugated sheet metal 1 in. in width. Results from this arrangement in an atmosphere of helium have shown gross effective thermal conductivity values to be approximately 150% of the values for the gas itself at pressures below 200 psia. From 200 psia to 1000 psia, conductivity increases with pressure to values approximately twice those for the gas itself. For the specific geometry tested effective conductivity was shown to be a function of mean insulation temperature, gas pressure, temperature gradient across the insulant, and insulation thickness.