ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
V. Rajagopal
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 218-224
Technical Paper | doi.org/10.13182/NSE62-A26060
Articles are hosted by Taylor and Francis Online.
An experimental investigation has been made of the self-fluctuations in neutron density in a nuclear reactor, and the response in neutron density for random reactivity inputs, using analog correlation techniques. The analysis of self-fluctuations was based on ion chamber measurements of the fluctuations of neutron intensity at various points. Autocorrelation analysis was then used to find the power spectrum of the fluctuations, which has the shape of square modulus of transfer function. A random reactivity input was realized by using an electromechanical system to convert the white noise of a radioactive source into linear motion of a small neutron absorber. Analysis of the response was made by autocorrelating the reactivity input and cross-correlating the reactivity input and the response in neutron density, and determining their spectra. The amplitude and phase of the reactor transfer function were determined from these spectra. Results are presented on some measurements made on a small reactor at Brookhaven National Laboratory. The measured transfer function agrees with the calculated transfer function.