ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
W. M. Lopez, J. R. Beyster
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 190-202
Technical Paper | doi.org/10.13182/NSE62-A26058
Articles are hosted by Taylor and Francis Online.
Neutron diffusion parameters in water have been measured at 26.7°C with the pulsed neutron technique. The results are 210 ± 1 µsec for the neutron mean lifetime, 37,503 ± 366 cm2 sec−1 for the average diffusion coefficient, and 5116 ± 776 cm4 sec−1 for the diffusion cooling constant. From these values the thermal absorption cross section of hydrogen and the thermal diffusion length in water can be inferred to be 325 ± 2 mb and 2.83 ± 0.02 cm, respectively. With a pulsed high-intensity neutron source provided by an electron linear accelerator, neutron lifetime measurements were performed on small and large water samples with values of the geometrical buckling from 0.014 cm−2 to 0.59 cm−2. Effects of harmonic modes in the large water geometries, which were determined by measurements of the time-dependent spatial flux distributions resulting from an external pulsed source of fast neutrons, were found to be adequately predictable with simple diffusion theory.