ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. CONDÉ, N. STARFELT
Nuclear Science and Engineering | Volume 11 | Number 4 | December 1961 | Pages 397-404
Technical Paper | doi.org/10.13182/NSE61-A26041
Articles are hosted by Taylor and Francis Online.
Using a large liquid scintillator as the fission neutron detector the number of prompt neutrons per fission, ν, for Th232 and U238 have been measured at neutron energies of 3.6 and 14.9 Mev. The values for U238 of 2.79 ± 0.09 and 4.75 ± 0.12 are in good agreement with earlier accurate measurements while the Th232 values of 2.42 ± 0.10 and 4.43 ± 0.13 agree with the results of Kuzminov et al. and of Leroy but not so well with that of Smith et al. The parameters of the equation (En) = (0) + a·En, where En is the neutron energy in Mev, have been obtained by fitting a straight line to the available data using the least mean square method yielding (En) = 1.87 + 0.177 En for Th232 and (En) = 2.30 + 0.154 En for U238.