ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. CONDÉ, N. STARFELT
Nuclear Science and Engineering | Volume 11 | Number 4 | December 1961 | Pages 397-404
Technical Paper | doi.org/10.13182/NSE61-A26041
Articles are hosted by Taylor and Francis Online.
Using a large liquid scintillator as the fission neutron detector the number of prompt neutrons per fission, ν, for Th232 and U238 have been measured at neutron energies of 3.6 and 14.9 Mev. The values for U238 of 2.79 ± 0.09 and 4.75 ± 0.12 are in good agreement with earlier accurate measurements while the Th232 values of 2.42 ± 0.10 and 4.43 ± 0.13 agree with the results of Kuzminov et al. and of Leroy but not so well with that of Smith et al. The parameters of the equation (En) = (0) + a·En, where En is the neutron energy in Mev, have been obtained by fitting a straight line to the available data using the least mean square method yielding (En) = 1.87 + 0.177 En for Th232 and (En) = 2.30 + 0.154 En for U238.