ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Taro Ueki, Brian R. Nease
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 184-191
Technical Paper | doi.org/10.13182/NSE05-15
Articles are hosted by Taylor and Francis Online.
The performances of autoregressive processes and the autoregressive moving average process of order two and one [ARMA(2,1)] have been investigated concerning the confidence interval estimation in Monte Carlo eigenvalue calculation. Two reasons exist for these model choices. First, the Wold decomposition states that any zero-mean stationary stochastic process can be expressed as the sum of a deterministic process and a moving average process of infinite order. This justifies the application of autoregressive fitting and autoregressive moving average fitting to a centered k-effective series from stationary iteration cycles. Second, ARMA(2,1) fitting is a logically natural refinement of first-order autoregressive fitting since the noise propagation in iterated source methods can be reduced to an autoregressive moving average model of orders p and p - 1 [ARMA(p, p - 1)]. Numerical results are presented for the "k-effective of the world" problem. The results indicate that ARMA(2,1) fitting performs much better than the autoregressive fitting of low orders. Also presented are some related theoretical results; MacMillan's formula to confidence limits can be derived from the ARMA(p, p - 1) representation of source distribution; and the multiplicity of higher eigenmodes can make the decay of the autocorrelation of source distribution much different than predicted by the sum of exponential terms. The latter result indicates poor performance that time series methods would exhibit for the confidence interval estimation of the fission rate distribution in the critical reactor with symmetric component placement.