ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Alberto Talamo, Waclaw Gudowski
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 172-183
Technical Paper | doi.org/10.13182/NSE06-A2603
Articles are hosted by Taylor and Francis Online.
In the future development of nuclear energy, the graphite-moderated helium-cooled reactors may play an important role because of their valuable technical advantages: passive safety, low cost, flexibility in the choice of fuel, high conversion energy efficiency, high burnup, more resistant fuel cladding, and low power density. General Atomics possesses a long experience with this type of reactor, and it has recently developed the gas turbine-modular helium reactor (GT-MHR), a design where the nuclear power plant is structured into four reactor modules of 600 MW(thermal). Amid its benefits, the GT-MHR offers a rather large flexibility in the choice of fuel type; Th, U, and Pu may be used in the manufacture of fuel with some degrees of freedom. As a consequence, the fuel management may be designed for different objectives aside from energy production, e.g., the reduction of actinide waste production through a fuel based on thorium. In our previous studies we analyzed the behavior of the GT-MHR with a plutonium fuel based on light water reactor (LWR) waste; in the present study we focused on the incineration of military Pu. This choice of fuel requires a detailed numerical modeling of the reactor since a high value of keff at the beginning of the reactor operation requires the modeling both of control rods and of burnable poison; by contrast, when the GT-MHR is fueled with LWR waste, at the equilibrium of the fuel composition, the reactivity swing is small.