ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Martina Kloos, Jörg Peschke
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE06-A2601
Articles are hosted by Taylor and Francis Online.
The MCDET method for probabilistic dynamics is a combination of Monte Carlo (MC) simulation and the Discrete Dynamic Event Tree (DDET) approach. The implementation of MCDET works in tandem with any appropriate deterministic dynamics code.MCDET was developed to achieve a more realistic modeling and analysis of complex system dynamics in the framework of probabilistic safety analyses. It is capable of accounting for aleatory (stochastic) uncertainties, which are the reason why the safety assessment is probabilistic, and for epistemic (state-of-knowledge) uncertainties, which determine the precision of the probabilistic assessment. In MCDET, discrete aleatory variables are generally treated by the DDET approach, whereas continuous aleatory variables are handled by MC simulation. For each set of values provided by the MC simulation, MCDET generates a new DDET.The paper gives a description of the MCDET method and an overview of the results that may be obtained from its application. The results presented were derived from an application of MCDET in combination with the deterministic dynamics code MELCOR for integrated severe accident simulation. For illustration purposes, the consequences in a German nuclear power plant after a station blackout were analyzed.