ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
J. G. Moore, R. H. Rainey
Nuclear Science and Engineering | Volume 11 | Number 3 | November 1961 | Pages 278-284
Technical Paper | doi.org/10.13182/NSE61-A26004
Articles are hosted by Taylor and Francis Online.
Laboratory experiments have demonstrated the chemical feasibility of incorporating soluble salts of the neutron poisons boron, cadmium, samarium, and gadolinium in solutions associated with the processing of Consolidated Edison reactor fuel (stainless steel-clad 96% ThO2-4% highly enriched UO2). At room temperature at least 0.3 M boron or neutron cross section equivalent is soluble in the 6 M H2SO4 decladding solution or Thorex dissolvent (13 M HNO3-0.04 M F-0.1 M Al(NO3)3. None of the poisons were volatilized to a significant extent (i.e., <6%) during evaporation for fuel adjustment. Distribution coefficients obtained in batch extraction tests indicated low extraction of these nuclear poisons from nitrate solutions by TBP in Amsco. Single-cycle countercurrent batch extractions with the acid Thorex flowsheet, which uses 30% TBP, gave decontamination factors from uranium for boron, cadmium, and rare earths of ≧1 × 104, > 1.5 × 103, and > 104, respectively. Countercurrent batch extractions with 2.5% TBP in Amsco resulted in concentrations of boron, rare earths, and cadmium in the uranium product which were at the limits of analytical detection, i.e., 2.5, <4, and <17 ppm, respectively. Two cycles of extraction should decrease the concentration of the nuclear poisons to acceptable levels for fuel recycle.