ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
T. A. Gens, R. E. Blanco
Nuclear Science and Engineering | Volume 11 | Number 3 | November 1961 | Pages 267-273
Technical Paper | doi.org/10.13182/NSE61-A26002
Articles are hosted by Taylor and Francis Online.
A Modified Zirflex process was developed in the laboratory for dissolution of 1–10 % uranium-zirconium alloy fuels clad in Zircaloy-2 to produce a nitrate solution from which uranium can be recovered by conventional solvent extraction methods. A flowsheet is presented for dissolution of 7% uranium-zirconium alloy in 5.4 M NH4F-0.33 M NH4NO3. Enough 1 M H2O2 is added continually during dissolution to yield 0.13 M H2O2 in the final solution, neglecting the amount reacting. Dissolution of a 70-mil thick sample is complete in 1 hr. The solvent extraction feed is prepared by adding aluminum nitrate and nitric acid to the dissolver solution to yield a stable solvent extraction feed solution of 0.0075 M uranium, 0.25 M zirconium, 1 M aluminum, 2 M fluoride, and 1 M nitric acid. The off-gas is approximately 98.5% NH6, 1% H2, 0.3% O2, and 0.2% N2. Conventional stainless steel such as 309SNb or Hastelloy F appear to be suitable materials of construction with corrosion rates varying from 0.1 to 3.0 mils/month.