ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
C. J. Oblinger, H. A. Dube
Nuclear Science and Engineering | Volume 11 | Number 3 | November 1961 | Pages 263-266
Technical Paper | doi.org/10.13182/NSE61-A26001
Articles are hosted by Taylor and Francis Online.
A diffusion coefficient for hydrogen in ingot uranium was determined at 800°C on 1-in. long slug blanks. A value of 14.2 × 10−5 cm2/sec was obtained from 15 determinations. The precision of the average value at the 95% confidence level was ±3.6%. Three methods of cleaning (preparatory to analysis) were employed, no bias being detected among them. An equation was used to calculate the total gas dissolved in a sample by measuring the gas evolved after a short time and using the diffusion coefficient. In a comparison of the total evolved gas (3-hr extraction) with the calculated total gas (½-hr extraction), an error of < ± 2% was obtained from 15 samples.