ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
J. R. Knight
Nuclear Science and Engineering | Volume 11 | Number 3 | November 1961 | Pages 239-245
Technical Paper | doi.org/10.13182/NSE61-A25998
Articles are hosted by Taylor and Francis Online.
Due to the interest in determining the dose received by persons near a criticality accident, a method for calculating the neutron spectra and neutron dose for highly enriched uranium solutions at various hydrogen to U235 atomic ratios has been developed. This method uses the output from a code for criticality calculations, and determines the average leakage neutron energy, the neutron leakage spectrum, the first collision neutron dose, and the total neutron dose. The results of these calculations show that the average energy of the leakage neutrons and the dose per incident leakage neutron per cm2 decrease somewhat with increased hydrogen to U235 atomic ratio, but it appears that this effect is sufficiently small so that an exact knowledge of the uranium concentration would not be necessary to obtain reasonable dose estimates. The effect of neutron scattering on the neutron spectra and doses is not evaluated. No attempt has been made to describe actual dose determination methods, since these have been adequately described elsewhere.