ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Steven E. Aumeier, Bulent Alpay, John C. Lee, A. Ziya Akcasu
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 101-123
Technical Paper | doi.org/10.13182/NSE06-A2599
Articles are hosted by Taylor and Francis Online.
We present probabilistic techniques that make synergistic use of available process information for diagnosis and detection of component fault manifestation in a multicomponent system. We begin by describing the motivation for using probabilistic techniques for systems diagnostics and then define probabilistic expressions that embody the diagnostics knowledge of interest. We show that a combination of a Bayesian expression with the solution to the Chapman-Kolmogoroff equation contains the diagnostic information of interest while explicitly making use of available process information including plant data or measurements, mathematical system models, and individual component reliability data. Given these probabilistic expressions, we introduce a practical means of obtaining the necessary constituent probability density functions corresponding to feasible component transitions via an adaptive Kalman filtering formulation. To demonstrate the consolidated probabilistic technique, we consider a low-order model of a balance of plant of a boiling water reactor, represented by 11 system variables, 9 component characteristics, and 5 observations. We simulate 5 to 10% degradations in two components subject to 1% signal noise in two different transient events. Our test calculations indicate that the proposed algorithm is able to provide correct fault detection and diagnosis of the faulted components and fault magnitudes, together with a rank-ordered likelihood of the binary faults.