ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Harold P. Smith, Jr., Alan H. Stenning
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 76-84
Technical Paper | doi.org/10.13182/NSE61-A25989
Articles are hosted by Taylor and Francis Online.
The open loop dynamic performance of a nuclear rocket engine with bleed turbine or topping turbine drive is studied with the aid of an analog computer. The dynamics are accurately described by a system of ordinary, nonlinear differential equations. A linear approximation to these yield a stability criterion that is a function of (a) the rate of change of reactivity with temperature at constant propellant density, (b) the rate of change of reactivity with propellant density at constant core temperature, and (c) the relation between states of zero time rate of change of core inlet pressure. An explicit prediction of (c) is given and enables a simpler criterion to be established. The engine is stable if (a) is negative. The system is remarkably insensitive to changes of the major coefficients and can safely withstand large perturbations. It is shown that the long term response, which is dependent on the mechanical inertia of the turbopump, is of the order of ten seconds for vehicles in the million pound thrust class and that reduction of the thermal inertia of the core does not improve the response. The simulation results are explained on the basis of physical considerations and analysis in which the root locus technique proves useful.