ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Harold P. Smith, Jr., Alan H. Stenning
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 76-84
Technical Paper | doi.org/10.13182/NSE61-A25989
Articles are hosted by Taylor and Francis Online.
The open loop dynamic performance of a nuclear rocket engine with bleed turbine or topping turbine drive is studied with the aid of an analog computer. The dynamics are accurately described by a system of ordinary, nonlinear differential equations. A linear approximation to these yield a stability criterion that is a function of (a) the rate of change of reactivity with temperature at constant propellant density, (b) the rate of change of reactivity with propellant density at constant core temperature, and (c) the relation between states of zero time rate of change of core inlet pressure. An explicit prediction of (c) is given and enables a simpler criterion to be established. The engine is stable if (a) is negative. The system is remarkably insensitive to changes of the major coefficients and can safely withstand large perturbations. It is shown that the long term response, which is dependent on the mechanical inertia of the turbopump, is of the order of ten seconds for vehicles in the million pound thrust class and that reduction of the thermal inertia of the core does not improve the response. The simulation results are explained on the basis of physical considerations and analysis in which the root locus technique proves useful.