ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Harold P. Smith, Jr., Alan H. Stenning
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 76-84
Technical Paper | doi.org/10.13182/NSE61-A25989
Articles are hosted by Taylor and Francis Online.
The open loop dynamic performance of a nuclear rocket engine with bleed turbine or topping turbine drive is studied with the aid of an analog computer. The dynamics are accurately described by a system of ordinary, nonlinear differential equations. A linear approximation to these yield a stability criterion that is a function of (a) the rate of change of reactivity with temperature at constant propellant density, (b) the rate of change of reactivity with propellant density at constant core temperature, and (c) the relation between states of zero time rate of change of core inlet pressure. An explicit prediction of (c) is given and enables a simpler criterion to be established. The engine is stable if (a) is negative. The system is remarkably insensitive to changes of the major coefficients and can safely withstand large perturbations. It is shown that the long term response, which is dependent on the mechanical inertia of the turbopump, is of the order of ten seconds for vehicles in the million pound thrust class and that reduction of the thermal inertia of the core does not improve the response. The simulation results are explained on the basis of physical considerations and analysis in which the root locus technique proves useful.