ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Frank B. Estabrook
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 43-47
Technical Paper | doi.org/10.13182/NSE61-A25982
Articles are hosted by Taylor and Francis Online.
A multigroup diffusion theory is formulated for heterogeneous reactors having periodic arrays of line discontinuities. These discontinuities are idealized cylindrical internal boundaries of an otherwise homogeneous moderating medium, and appropriate mixed-group or multiplying boundary conditions at such boundaries allow Floquet solutions to be found for the neutron fluxes in the moderator. Real superpositions of such Floquet solutions can then give the physical fluxes in finite reactors. The requirement that a Floquet solution in the moderator have the proper thermal flux behavior at a cylindrical internal boundary, to match the thermal flux actually inside a fuel rod, leads to a “criticality” condition, the solutions of which give the spectrum of allowed Floquet solutions. For each of these a relation between material bucklings Bx2, By2, and Bz2 is obtained which is, in general, anisotropic.