ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
C. Gordon Duff
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 278-284
Technical Paper | doi.org/10.13182/NSE61-A25971
Articles are hosted by Taylor and Francis Online.
A method for joining Zircaloy-2 with stainless steel, using controlled expansion transition sections, is described. The transition sections consist of nickel-iron elements of the Invar type and range from low expansion rate 43% nickel-iron, at the Zircaloy-2 end, to high expansion rate 60% nickel-iron, at the stainless steel end. Problems encountered in producing suitable mechanical joints between Zircaloy-2 and 43 % nickel-iron and in preparing and welding the various grades of nickel-iron to each other and to stainless steel are discussed.